Non-linear contributions to interactions in climate networks:
sources, relevance, nonstationarity

Hlinka, J.; Hartman, D.; Vejmelka, M.; Paluš, M.

Institute of Computer Science, Academy of Sciences of the Czech Republic

EGU General Assembly
Vienna 2012
Context: Studying global climate structure
Context: Studying global climate structure

- data-driven analysis
Context: Studying global climate structure

- data-driven analysis
- motivation (aims):
Context: Studying global climate structure

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - dimensionality reduction (poster XY400, Wed 15.30)
 - feature & change detection (poster XY399, Wed 15.30)
 - uncovering (dynamical) mechanisms
Context: Studying global climate structure

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - dimensionality reduction (poster XY400, Wed 15.30)
 - feature & change detection (poster XY399, Wed 15.30)
 - uncovering (dynamical) mechanisms
- typical workflow:
Context: Studying global climate structure

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - dimensionality reduction (poster XY400, Wed 15.30)
 - feature & change detection (poster XY399, Wed 15.30)
 - uncovering (dynamical) mechanisms
- typical workflow:
 - dependence quantification (data → global interaction matrix)
Context: Studying global climate structure

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - dimensionality reduction (poster XY400, Wed 15.30)
 - feature & change detection (poster XY399, Wed 15.30)
 - uncovering (dynamical) mechanisms
- typical workflow:
 - dependence quantification (data \rightarrow global interaction matrix)
 - graph-theoretical analysis or decomposition into subsystems
Context: Studying global climate structure

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - dimensionality reduction (poster XY400, Wed 15.30)
 - feature & change detection (poster XY399, Wed 15.30)
 - uncovering (dynamical) mechanisms
- typical workflow:
 - dependence quantification (data \rightarrow global interaction matrix)
 - graph-theoretical analysis or decomposition into subsystems
 - characterizing properties or alterations
Context: Studying global climate structure

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - dimensionality reduction (poster XY400, Wed 15.30)
 - feature & change detection (poster XY399, Wed 15.30)
 - uncovering (dynamical) mechanisms
- typical workflow:
 - dependence quantification (data \rightarrow global interaction matrix)
 - graph-theoretical analysis or decomposition into subsystems
 - characterizing properties or alterations
Characterizing dependence

Independence: $p(X, Y) = p(X)p(Y)$
Characterizing dependence

Independence: \(p(X, Y) = p(X)p(Y) \)
Characterizing dependence

Independence: \(p(X, Y) = p(X)p(Y) \)

Measuring dependence:

Pearson’s correlation \(\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y} \)
Characterizing dependence

Independence: \(p(X, Y) = p(X)p(Y) \)

Measuring dependence:
Pearson’s correlation \(\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y} \)
Characterizing dependence

Independence: \(p(X, Y) = p(X)p(Y) \)

Measuring dependence:

Pearson’s correlation \(\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y} \)

Mutual information:

\[
I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right)
\]
Question
Question

▶ What are the key characteristics of nonlinear interactions in (monthly) climate data?
Question

- What are the key characteristics of nonlinear interactions in (monthly) climate data?
- nonlinear interaction:
Question

- What are the key characteristics of nonlinear interactions in (monthly) climate data?
- Nonlinear interaction: deviation from linear interaction
Question

- What are the key characteristics of nonlinear interactions in (monthly) climate data?
- Nonlinear interaction: deviation from linear interaction
 - existence
Question

- What are the key characteristics of nonlinear interactions in (monthly) climate data?
- nonlinear interaction: deviation from linear interaction
 - existence
 - strength
Question

- What are the key characteristics of nonlinear interactions in (monthly) climate data?
- Nonlinear interaction: deviation from linear interaction
 - Existence
 - Strength
 - Localization

- Sources/form/origin
- Relevance for higher-order analysis
- Treatment
Question

What are the key characteristics of nonlinear interactions in (monthly) climate data?

- Nonlinear interaction: deviation from linear interaction
 - Existence
 - Strength
 - Localization
 - Sources/form/origin
Question

- What are the key characteristics of nonlinear interactions in (monthly) climate data?
- nonlinear interaction: deviation from linear interaction
 - existence
 - strength
 - localization
 - sources/form/origin
 - relevance for higher-order analysis
Question

- What are the key characteristics of nonlinear interactions in (monthly) climate data?
- Nonlinear interaction: deviation from linear interaction
 - existence
 - strength
 - localization
 - sources/form/origin
 - relevance for higher-order analysis
 - treatment
Data and methods

Data: NCEP/NCAR reanalysis dataset
 - surface air temperatures
 - monthly data (years 1948 - 2007; 720 timepoints)
 - global grid 73×144 points (2.5 deg \times 2.5 deg sampling)
 - yearly cycle removed (anomalies)

Methods: interaction/dependence quantification
 - nonlinear: mutual information (pdf estimated using equiprobable binning; $N=8$)
 - linear: Pearson's correlation
 - mutual information on linear surrogate data
Data and methods

Data: NCEP/NCAR reanalysis dataset
- surface air temperatures
- monthly data (years 1948 - 2007; 720 timepoints)
- global grid 73×144 points (2.5 deg \times 2.5 deg sampling)
- yearly cycle removed (anomalies)

Methods: interaction/dependence quantification
- nonlinear: mutual information (pdf estimated using equiprobable binning; N=8)
- linear
 - Pearson’s correlation
 - mutual information on linear surrogate data
Results: Existence

Controling for method bias:

Statistical testing against 100 surrogates: 15% links above 95th percentile
Results: Existence

Controlling for method bias:
Results: Existence

Controlling for method bias:
Localization of nonlinear contributions
Localization of nonlinear contributions

- Mean MI of a node
- Mean extraMI of a node
- Mean extraMI of a node (relative to meanMI)
Localization of nonlinear contributions
introduce conservative preprocessing: month-wise variance equalization

Statistical testing against surrogates: 8% links above 95th percentile
introduce conservative preprocessing: month-wise variance equalization
introduce conservative preprocessing: month-wise variance equalization
introduce conservative preprocessing: month-wise variance equalization

Statistical testing against surrogates: 8% links above 95th percentile
Form/origin II

Temperature anomalies:

After additional normalization of variance:
What about remaining ‘non-linearities’?
More examples
Form/origin III

Temperature anomalies:

After additional normalization of variance:
Form/origin III

Temperature anomalies:

After additional detrending:
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed

strength: non-linearities are relatively minor

Questions

▶ What if linear and nonlinear measures disagree?
▶ What about genuine non-linearities?

Thank you for your attention!

This study was supported by the Czech Science Foundation project No. P103/11/J068.
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed

strength: non-linearities are relatively minor

localization: non-linearities are spatially sparse

Questions

▶ What if linear and nonlinear measures disagree?

▶ What about genuine non-linearities?

Thank you for your attention!
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed

strength: non-linearities are relatively minor

localization: non-linearities are spatially sparse

sources: strongest non-linearities are non-stationarities
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed

strength: non-linearities are relatively minor

localization: non-linearities are spatially sparse

sources: strongest non-linearities are non-stationarities

Questions
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed

strength: non-linearities are relatively minor

localization: non-linearities are spatially sparse

sources: strongest non-linearities are non-stationarities

Questions

- What if linear and nonlinear measures disagree?
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed

strength: non-linearities are relatively minor

localization: non-linearities are spatially sparse

sources: strongest non-linearities are non-stationarities

Questions

- What if linear and nonlinear measures disagree?
- What about genuine non-linearities?
Conclusion

existence: deviations from linear dependences (non-linearities) confirmed
strength: non-linearities are relatively minor
localization: non-linearities are spatially sparse
sources: strongest non-linearities are non-stationarities

Questions

▶ What if linear and nonlinear measures disagree?
▶ What about genuine non-linearities?

Thank you for your attention!

This study was supported by the Czech Science Foundation project No. P103/11/J068.
Relevance for graph topology
Donges et al., 2009: nonlinearity key for global topology
Other datasets: ERA